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2 Graduate School. Chinese Academy of Sciences. PO Box 3908, Beijing, China 

Received 22 March 1989 

Abstract. The quantum inverse scattering method is applied to the nonlinear Schrodinger 
model of fermions with attractive interaction. Both scattering and bound-state operators 
are constructed. Among state operators, there are a generator of infinitely many conserved 
quantities and the creators of the the eigenstates of these quantities. The commutation 
relations and the eigenvalues of physical interest are calculated. The quantum Gelfand- 
Levitan equations are established. The Fourier transform of the connected part of the 
4-point Green function and the two body S matrix are calculated explicitly. 

1. Introduction 

In the development of the quantum inverse scattering method, the nonlinear 
Schrodinger model has played an important role. The direct problem of bosons 
of spin 0 with repulsive coupling was solved by Faddeev and Sklyanin (1978), Sklyanin 
(1979) and Thacker et a1 (1979). The correspond inverse problem was done by Creamer 
et a1 (1980). The direct generalisation of the work of Sklyanin (1979) and Pu and Zhao 
(1984) to the multicomponent nonlinear Schrodinger model of bosons or fermions with 
repulsive coupling was made by Pu et a/ (1987). Other generalisations with different 
emphasis were made by Kulish (1980, 1985). The system consisting of both bosons and 
fermions was studied by Fan et al (1988). 

As is well known, there are bound states in the nonlinear Schrodinger model 
with attractive interaction. This makes the solving of the system much more difficult. 
Gockeler (1981a, b) introduced the bound-state operators in solving the system with 
attractive coupling. Although his method is rigorous and elegant, it is too complicated to 
apply to the multicomponent nonlinear Schrodinger model. In this paper, we generalise 
the simpler and rigorous approach of Pu and Zhao (1986) to solve the multicomponent 
nonlinear Schrodinger system with attractive coupling. In $2, we define our model 
and introduce the auxiliary linear problem. We derive the commutation relations for 
some important operators by solving two sets of Yang-Baxter equations. Then, we 
construct the state operators and calculate commutation relations between them in tj 3 
and discuss these state operators in 4 4. In @ 5  and 6, we derive the Gelfand-Levitan 
equations of our model which are the central results of this paper. Finally, we apply 
these results to calculate the Fourier transform of the connected part of the 4-point 
Green function and the two body S matrix. 

Q Present address: Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, 
USA. 
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2. The model and the auxiliary linear problem 

Through this paper, we adopt the following convention: indices a, b, c. d = 1,2,. . . , N 
and 1 ,  m = 1,2,. . . , N + 1 where N is an even number; summation is taken for repeated 
indices. 

The quantum nonlinear Schrodinger model of spin (N - 1)/2 is defined by the 
Hamiltonian 

+ cuf (x )u ’ (x )u (x )u (x )  
2u+(x )  du(x)  

dX 

where c < 0 is the coupling constant, u ( x )  = (ul(x), ..., u N ( x ) )  are the Heisenberg field 
operators satisfying the equal time anticommutation relations : 

The vacuum state IO) of the system is defined by u(x)lO) = 0 and (OIO) = 1. 

our system is 
The Zakharov-Shabat auxiliary linear problem (Zakharov and Shabat 1971) for 

2 
- T ( x , y  1 E.) =: L(x,E.) T ( x , y  I E.) 
dX 

T(y,yJE.) = 1 

where ‘: . . . :’ denotes the normal order, E. is the spectral parameter and 

L(x,E.) = iE.J/2 - & E N + l , a ~ , + ( ~ )  + ~ E , J + I ~ , ( ~ )  

where Ei j ,  i ,  j = 1,2,. . . , N + 1, and J are (N + 1) x ( N  + 1) matrices defined by 

(Eij),, = d i r d j m  

J = diag(1, . .  . , 1,-1). 

(2.3) 

where ‘as’ is the direct product of matrices in the graded sense, which is defined by 

( U  as v)l,l = ( - l ) ” ” ~ ” ’ + P ~ ) I  U IJ v Im 

where U and V are (N + 1) x ( N  + 1) matrices and 

1 i f I = N + l  
’ ( I )  e { 0 otherwise. 
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After solving the Yang-Baxter equation 

R(j.,p)D(L,p 1 x )  = D(p, i. I x)R(i . ,p) 

(2.7) 

Now, we introduce some operators important to solving the model: 

cp(x,/l) = lim E ( - y , i ) T ( y , x  1 i.) (2.8) 

~ ( x ,  i.) = lim T ( x ,  y 1 i . )E (y ,  i.) (2.9) 

J'+X 

1 '4 -Z  

where E ( y , i )  = exp(iRyJ/2). 
The analyticity of cp(x, i.) and ~ ( x ,  i.) are described by the following table: 

After some manipulation on (2.6) similar to what was used by Thacker (1982) in 
which the existence of the limit of cp and x as y + kzc are taken into consideration, 
we get the following commutation relations for cp(x, 2 )  and ~ ( x ,  1.) : 

where 

R - ( i . , p )  can be obtained from the expression of R+(i ,p)  by changing the sign of the 
S -function term. 
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Similarly, we find 

where 'ST' is the supertranspose of matrices defined by 

and T + ( x , j  1 i.) = [ T ( x , y  I >)I+: 
i. - p - iNc 

E. - p 
RI  (;", p )  = E l . m  6 [ ( - l ) p ( ' ) + p ( m )  - IC El,", + ( - 1 ) P " ) P " '  E m J ]  

i. - j i  

(i. - p - iNc)(;. - p - ic) 
( E .  - j i  + io+)* - EN+lJv'+l  @ E N + l J + l .  

The relation between R,+(E.,p) and R I - ( & @ )  is the same as that between R - ( & p )  and 
R+ (E., P I .  

3. State operators 

Just as in the nonlinear Schrodinger model of spin-0 particles, there are scattering 
states as well as bound states for our system when c < 0. We start searching for the 
state operators corresponding to them with the following definitions: 

(3.1) 

where i.; = i. + ic(n - 1)/2 - ic(n - j ) .  They are analytic with respect to i with sufficient 
large Im 2 .  An important property of cp(. . .) is 

cp(n, r I pa , ,  P a 2 , .  . . , Pa,-, I i , x )  = ( - ~ ) [ ' ] c p ( n , r  I a , , .  . . , a n p r  I i , x )  (3.2) 

where P is a permutation of a , ,  . . . , an-r and (-1)['] is the sign of it. This antisymmetric 
property can be justified by 



Nonlinear Schrodinger model 4839 

which is derived from (2.10). Now, (3.1) admits the following general Neumann 
expansion 

ui l (xl)  ~ ~ ~ u ~ ~ ~ , ~ x ~ - ~ ~ u ~ l ~ ~ ~ ~ ~ ~ ~ u ~ ~ ~ x k ~ u b ~ ~ z k ~  ...'bl(zI) (3.4) 

where hk(l . . .  I . . .  I A,x) are antisymmetric with respect to the integral variables 
correspond to the indices in the same 'box'. By using the Gockeler (1981a) method, 
and the equation 

a 
- d n , r  I ~,,...,a,,-~ I Ax) ax 

= [(2r - n )  + ic(n - r ) r ]  cp(n, r I a l , .  . . .an-r I E.,x) 
n-r - 

+ C ( - l ) j - ' ~ u , : ( x ) c p ( n , r +  1 I a, ,..., a, ,..., an-r  I 4 ~ )  
n= I 

- J - c r  cp(n,r - 1 I a,, . . . .an-rra I A,x)u,(x) (3.5) 

(where the bar on the index aj means the absence of it), as well as the boundary 
condition 

X-+--2 lim exp(iAnx/2) cp(n, r I a,, . . . , I A,x) = a,, (3.6) 

we can prove that hk(l ... I ... I A,x) are analytic with respect to I and when c < 0, 
Imi. > 0 

n-r k 

I ck(n, r )  n e(xj > x) n qY, > x)e(zj > x) exp { [ c ( n  - r ) r / 2  - rIm 21 x )  
]=I j=1 

(3.7) 

where k = 0,1,. . .; r = 0,1,. . . , n and Ck(n,  r )  are constants. This implies the analyticity 
of cp(n,r I U , , . . . , U ~ - ~  I 2 , ~ )  on the upper half I plane when c < 0. Furthermore, we 
have 

.Y-+--2 lim cp(n,r I a, ,..., an-r I A,x) = O  

An() . )  = x-+ -x  lim exp(iAnx/2) ~ ( n ,  r I a,,  . . . ,an-+ I A,x) 

for r #O,n. (3.8) 

We define the state operators A n @ )  and B + ( .  . .) as the following: 

(3.9) 

B(;. I n I a l , .  . . , a n )  = lim exp(-iInx/2) cp(n,O I al, .  . .,a, I I,x). (3.10) 
X-+-CC 
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These state operators satisfy the following commutation relations which we will derive 
in appendix 1 : 

(3.1 1) 

where ii = min(m, n ) ;  

We list the commutation relations for A,(;.) ,  B ( .  . .), E+(. . .) etc in appendix 1. 

4. The eigenstates of the system 

Since A,,(E,) and Am@) commute, the expansion of InA,(i.) near 121 = cc 

‘k ln’,(i.) = - 
(ij.)k 

k=O 

(3.13) 

will provide us with a family of commutative operators (Ck;k = 1,2, ...}. Further 
co-nputation shows that the number of particles 

the total momentum 

P = iC,/c - iC,/2 

the total energy 

and therefore {C, ; k = 1,2,. . . , } is a family of conserved quantities of our system which 
commute with each other. 

Another kind of conserved quantities are generated by 

Tu,b(%) = x - t - z  lim e~p(-iE,x/2)cp~,~(x, A) (4.2) 

in the same way as (4.1). Among these quantities there are 

P* 



Nonlinear Schrodinger model 4841 

(a is fixed), namely the number of particles with a fixed value of the z component of 
spin. 

Equation (3.10) indicates that 

(4.3) 

where k = I ,  2 , .  . . are the eigenstates of A,(i.) and thus common eigenstates of the 
infinite number of conserved quantities C,, n = 1,2,. . . . The eigenvalues of physical 
interest are given by the following: 

[ N , B + ( ~ .  I n 1 a , , .  . .,a,,)] = nB+(i. 1 n 1 a,, .  . .  ,a,) 

[P,B’(i. j n 1 a,, .  . . ,a,,)] = nELBf(i. 1 n 1 a, , .  . . ,a,,) 

(4.4a) 

(4.4b) 

1 [ 12 
C2 

n i 2  - ---(n3 - n)  B+(i. 1 n 1 a,, . .  . , a,) [H,B+(i .  1 n I a l , . .  . ,a,,)] = (4.4c) 

[ H , A , , ( ~ . ) ]  = 0. (4.4d) 

This is equivalent to saying that the action of B+(i. I n 1 a , , .  .,,a,,) on a state of 
our model is to add to the state an n-particle part (bound part if n > 1) with total 
momentum ai. and total energy - hc2(n3  - n)], and the z component of the total 
spin - n ( N  + 1)/2. 

From ( 4 . 4 ~ )  and (4.4d), we derive the following time evolution relations for B+(. . .) 
and A,,(>”): 

A,,(i., t )  = A,(>.). (4.6) 

Another fact implied from (3.2) is that there are only 2” - 1 different B+(i. 1 n j 
a, ,  . . . , a,); N of them correspond to the scattering states of the system while the others 
correspond to the bound states. 

In the following, we consider the states (4.3) as a complete base of the state space 
of our system and, therefore, we can prove equations and the analyticity of operators 
by evaluating the actions of these operators on the states (4.3) 

5. Gelfand-Levitan equations (1)  

We can prove the following by the definition (2.3) of T(x,y I A) that when x 2 z 2 y 

T(x,z 1 i . )T ( z , y  1 E.) = T ( x , y  12.) (5.1) 

and 
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Equation (5.1) tells us that cp(x,i)x(x,E.) is a constant with respect to x and we 
denote it by 

T( i )  = q(x, E.)x(x, E.). (5.3) 

In fact, 

If we define 

then (5.1) and (5.2) lead us to an Izergin-Korepin relation (cf Izergin and Korepin 
1981) for the Jost functions 4(')(x,A) and tp("(x,A): 

G(x, E.) = AT'(;* - ic)4"+I)(x, i - ic) 

= B+(A I 1 I a),4;'(j+p(')(x, i.) exp(-iix) + yP+l)(x,  A) (5.9) 

) G(x,A) : d -iE.IN J-c u+(x) 
0 

+ CebFELI (x, 1.) T;Jl,b(x, ).)A;' (Eb) ~k::~(x, E.) (5.10) 

where e r  = (0,. . . ,O, 1,0,. . . ,0) are ( N  + 1)-dimensional vectors with bth component 
equal to 1, and 

F&, (x, i.) = -B+(E. I 1 I a)A;'(I.)TA;+llsV+I (x, A) exp(-iix) + ~~i:~,'(x, I.) .  

This hints to us to introduce 

F(')(x, 2%) = B + ( i  I 1 1 a)A;l(A)Ji$N+I)(x, A) exp(-iE.x) + i$")(x, i) (5.11) 

(where i$')(x, i) = [w(')+(x, E.)] T, to form a complete group of differential equations 
along with (5.9): 

The boundary conditions of G(x, i) and F(")(x, A) at x = cc are 

G(cc,i.) = eN+, [B+(i. 1 1 I a)A;'(A)B(i I 1 I a) +A:(] . ) ]  

F (a, E.) = eb [ T&(A) + T&+, (E.)A;'(A)B(A I 1 I a)]. 

(5.13a) 

(5.1 3 b) 
- - (U)  
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When i. # p, we have 

We conclude from these that G(x,i.), F i " ( x ,  E.) and A- ' ( )" )  are piecewise analytic on the 
upper half i plane with discontinuities across Im E, = -cn/2 where n = 1,2,. . . , N - 1 
for G(E, E.) and F'")(c;c,E.) while n = 2,3,. . . , N + 1 for A-'() . ) .  Thus, we can expand 
G(x, i.) and F f U ) ( x ,  i.) as we did for cp(. . .) in 0 3 and analyse the analyticity of G(x, i,) 
and F'") (x , i . )  with the help of the differential equations (5.10) and (5.12). We can find 
that G(x, 2) and F(")(x,E.) are analytic except when Im i. = -cn/2, n = 1,2,. . . , N + 1. 
On the other hand, the equation 

enables us to rule out two of them: Imi. = -cN/2, -c(N + 1)/2 for G(x,E.). 

behaviour 
Now, using the analyticity of G(x,i.) and Ffa)(x,j.) as well as their asymptotic 

we can study some contour integrals and write out a series of integral equations 

disc G(x, p - icni2) 
/. -- p + icn/2 

n= I 

disc ,'"'(x, p + inc/2) 
i. - p - icn/2 

N+1 

n = l  
2ni 

(5 .14~)  

(5. 14b) 

where disc G(x, p )  = G(x, p + io+) - G(x, p - io+) 
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6. Gelfand-Levitan equations (2) 

6.1. The expression of disc ( x ,  j . )  

In the previous section, we obtained a series of integral equations of our system. But, 
we still do not know much about discG( ...) and discF'")(. ..). We are going to find a 
expression for them in this section. 

First of all, we can prove that disc G ( x ,  j L )  can be expressed in the form 

disc G'(x, i.) = ( H , ( x ,  j . ) ,  . . . , H , , ( x , j . ) )  (6.1.1) 

by using discA-l(i.) x A( j . )  = 0 and the following consequence of (5.2): 

(6.1.2) 

(6.1.3) 

(6.1.4) 

(6.13) 

(6.1.6) 

This means that H , ( x ,  i.) are constants with respect to x and therefore 

disc G'(x, i.) = (HI (i.), . . . , H,v 0.)) (6.1.7) 
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On the other hand, it can be shown by calculating the eigenvalues of G(x,%) 
corresponding to (4.3) that 

disc G(cc, i. - ic(n - 1)/2) 

= eN+,B+(i. 1 n 1 a , , .  . . , a,l)A;i(i.) (A:- , ( j .  - ic/2))-' B(i. 1 n ! a l , . .  . , afl). 
(6. I .8) 

This equation and the definition of E+(.  . .) lead us to the conjecture that 

disc G(x, i. - ic(n - 1)/2) 

= E+(i. I n I a, a , ,  . . . , a,,-l x A;' (E.)  AT-^ (i. + ic/2)] 

x B(i. + ic/2 1 n - 1 1 a,, .  , . ,a,-,)lp'"'(x, i" - ic(n - 1)/2) 

x exp[-ix[i. - ic(n - 1)/2]} (6.1.9) 

that is 

Ha(;.  - ic(n - 1)/2)  = Rt(i .  1 n 1 a a , ,  . . . ,an-l)R(i. + ic/2 I n - 1 I a , ,  . . . ,a,-, 1 (6.1.10) 

where 

1 R+(i. I n 1 a l , .  . . $a,) = E+(). 1 n 1 a,, . . . , a,)A; 0.). 

In appendix 2, we will prove this conjecture and justify the expression 

z ( -~) [ ' ]E( i .  + ic/2 1 n - 1 1 Pa, ,  . . . , Pa fl-1 )wip"n)(x ,  i. - ic(n - 1112) 
P 

as the analytic continuation of 

~ ( - l ) ' ' ]B( i .  1 n - 1 I P a , , .  . .rPa,-,)tp'P"n)(x,j. - icn/2) 
P 

where P are the permutations of u I , .  . . ,a,,. 

6.2. The Gelfand-Leuitan equations 

By computing the following: 

u i ( x ) G ( x , i )  + J G ( x , i . ) u ; ( x )  
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This means that if the action of one of the (Ub(X), H , ( i ) }  exp(-ii.x/2) and 

disc [ ~ " ' ( x ,  i.)~:J~,~(x, j . )AF1( i ) ]  

on the states 

m 

J x  . . . lI dx, . . . dx,,, 6(y < x,) g(y;x, ,  . . . ,xm) u: , (x ) .  . .u:~(x) 1 0) 
] = I  - 7- 

is well defined, then so is the other and they are equal: 

{u,,(x), ~~(i-)} exp(-ij.x/2) = disc [ ~ ( " ' ( x ,  iw)T.rJl,b(x, j.)A;'(i)] 

This conclusion leads us to the discovery that if 

AIU1(x, i.) = H,(i.)Ji$"+"(x, 2) 

is well defined, then 

2 
- [A(ul(x, i) - disc F")(x, i.)] 
2X 

= : (  -J-cuf(x) 0 Gc.u(x)) -11. [A'"'(x, i.) - disc F'")(x, j.)] : . 

(6.2.2) 

(6.2.3) 

(6.2.4) 

(6.2.5) 

On the other hand, after evaluating the action of A(4t(oc, i.) + disc F'"'(oo, i.) on states 
(4.3), we find that it is zero. According to the uniqueness of the initial value problem 
of (6.2.5), it follows that 

discF"'(x, j. + ic(n - 1)/2) 

- - J W ' . V + l )  (x,i. + ic(n - 1)/2)R+(i. - ic/2 I n - 1 j a,,. . . ,a,,-i) 

x R(i. I n I a , a ,  ,..., uf lp1) .  (6.2.6) 

We accomplish the above derivation by proving, in appendix 3, that A(")(x,R) and 
A(')(cc,i.) are well defined. Now, we can replace the discG(x,i.) and discF(x,j.) in 
(5.14) by (6.2.6) and (6.1.9) and obtain the Gelfand-Levitan equations of our system: 

1 ,' exp{ix[p - ic(n - 1)/2]) c S_: dp i. - p + ic(n - 1)/2 - io+ 
w',v+l)(x,j.) = ev+ l  - - 

2ni 
n= I 

x R + ( p  - ic/2 I 11 - 1 1 a ,,.. . , a , , - , ) R ( p  I n 1 a .a l , .  . . ,aflpl) .  (6.2.76) 
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Expanding the ( N  + 1)th component of y~(~)(x,A) near i. = 00, we find that 

(6.2.8) 

Applying (6.2.8) and (4.5) to (6.2.7), we find the time evolution for the Heisenberg field 
operators : 

X 

u,(x, t )  = ~ 1 dpR(p I 1 1 a) exp(ipx - ip’t) 
2 7 c G  -x 

+. . .  . (6.2.9) 

By using the above results, we can calculate explicitly the Fourier transformation 
of the connected part of the 4-point Green function and the two body S matrix. They 
are 

-8n2ic [ I  + 6 ( k ,  + k 2 - k’, - k;)6(o1 + 0 2  - CO; - CO;) G4‘ = 
* [ (kj - wI - iO+)(kJ2 - oj - io+)] (1 + ica-l) n,=, 

and 

E. - p - ic s = ( - l )J  
E.-p+ic E.-p+ic 

respectively, where J is the total spin of the two particle states and 

Appendix 1. The commutation relations of state operators 

A natural way to get the commutatior? relations for state operators is to calculate the 
corresponding relations for q(. . .). For example, we study the commutation relation 
between q ( n ,  n I E., x) and q(m, 0 1 a, ,  . . . ,a,,, 1 p, x) in the attempt to find the one between 
An().) and B ( p  I m 1 a, ,  . . . ,am).  
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Lemma. 

can be expressed by 

q(m, SI 

where b',, . . . , bk-s8,  U', 

Therefore, 

he linear combination of 

I I  b',, . . . , bk-,, I p ,x )cp (n , r  I a, , .  . .,a;+, I ;.,XI 

. . . , aiwrt are the rearrangements of a,, . . . ,anpr, b,, . . . , bm-,. 

cp(m,O I a l , . . . , a m  I p,x)cp(n,n I ).,XI 
= c,cp(n,n I j.,x)cp(m,O I a l , . . . , a m  I p , x )  

+ c*6,,cp(n,O I U , , . .  .,Un I p ,x )cp (n ,n  I i , x )  + . . .  . (Al . l )  

According to (3.6), all the other terms vanish as x -+ --x. Thus, the only thing we have 
to d o  now is to calculate the coefficients c l ,  c2 in (Al.1). We accomplish this by using 

(A1.2) 

i. - p + ic(l n - m I +2k)/2 
i. - p - ic(m + n - 2k)/2 cp(m, 0 I a,, . . . ,am I P, x)cp(n, n I i., x) 

k = l  

(ic)fln !dmf l  
Ill=, [i. - p - ic(n - k)] 

+ ~- cp(n,O I a , , . .  . , a f l  I p,x)cp(n,n I i.,x) + .  .. . 
(A1.3) 

By letting x --i -x in (A1.3), we get (3.13). 

E ( .  . .). We list some of them in the following: 

E+(; .  I n I al,...,afl-r,cl,...,cr)B+(p I m I b l , . . . , bm- r , c l , . . . , c r )  

Similarly, we can obtain other commutation relations among A,,(;.), B+(. . .) and 

n 

- - 
x B + ( p l  m l u  i l , . . . ,  ai,,b 

x E+(; .  1 n 1 a l , .  . . , d l l , .  . . ,a,,, . . . ,anpr,  bjl, . . . , b,,, c, , .  . . , c r )  

b j~ , . . . , b j , , . . . , bm-r , c l , . . . , c r )  
- 

(A1.4) 
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where the sets {a,,. . . , an-r} and {61,. . . ,6m,}  have no common element and c l , .  . . ,cr  
are fixed. The bar on the indices means the absence of them: 

W. I n I a [ ,  ..., an-rlcI, . . . ,cr)B+t(p I m I b l , . . . ,6m-r,cl  ,... ,cr)  

(E. - p j 2  + c2(m + n12/4 
(1. - p)* + c2(n - m)2 

x fi [j. - p - ic(l n - m I +2k)/2] 
k=fi-r+l+l 

Appendix 2. The proof of (6.1.9) 

Definition. 

(A1.5) 

(A2.1) 

where E., = i. + ic(n - 1)/2 - ic(n - j ) .  

From (2.11), we can derive that 

Now, we can prove the analyticity of x ( n , r  1 . .  . 1 i.,x) on the lower half 2, plane by 
using the same method we used to prove the analyticity of q ( n ,  r I . . . I A, x). 

Operators x(n,r 1 . . .  I E.,x) along with q ( n , r  1 . . .  1 i , x )  gives us an alternative 
expression of E+(. . .) : 

(A2.3) 
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Thus we can make the right-hand side of (6.1.9) well defined by introducing the 

Haitao Fan, Fu-Cho Pu and Bao-Heng Zhao 

expression 

c( - 1 )'-I B (I 
n 

j = l  

- - 

x q + ( n  - 1,r I 61,. . . 
x x + h r  + 6mN+l I (1 - 6mJI'+l)m,61,...,bn-r_l I al ,  . . . an  I Lx). 

I A + ic/2,x) 

( A 2 4  

Under this definition, the right-hand side of (6.1.9) has the same boundary value as 
that of disc G(x, I) at x = a. This implies that the action of 

disc G(x, i-ic(n- l)/2)-Ha(j.-ic(n- 1)/2)y(')(x, I-ic(n- 1)/2) exp{-ix[i-ic(n- 1)/2]} 

on the states 

is zero and hence (6.1.9) follows. 

Appendix 3. The existence of A(")(x,1) and A'"'(m,rZ) 

Noticing (A2.3), we find that the existence of A(')(x, A) depends on the existence of 

x L ~ ~ + ~  (x, i. + ic(n - 1)/2)x(n - 1, r I 61,. . . , b,,.+l I a,, . . . , an-l I I - ic/2, x) 

= ~ ( m l n - l , r l 6 ~ ,  ..., 6n-r-l l a l  ,..., an.-l I I ,x )  (A3.1) 

or x(m I n - 1, r I 61,. . . , 6fl-r-1 I I ,  x) for short. With the help of 

~ ( 6  I n , r -  1 I6,t~I,.-*,6,,-~ I A,x) = (-lYx(N + 1 I n , r  - 1 161, ..., 6n-r I A,x) 

which originates from 

(A3.2) 

(x, 1. + ic)xa,b(x, 1.) = - X L + ~ ~ + ~  (x, I + ic)xN+l,u(x,4 (A3.3) 

we derive the following differential equations: 
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a 
ax - x ( N  + 1 I n,r  I b ,  ,..., b,,-.r I ~ x )  

= i i  [(n - 2r + l)A - ic(n - r + l)r)] x ( N  + 1 1 n, r I b,,  . . . , bn-r I i., x )  

- G ( - l Y x ( b  I n, r I b,,. . . , bn-r I 2, x ) u ~ ( x )  

+ &(-l)'ru:(x)X(N + 1 1 n, r  - 1 I b, b, , .  . . , bn-r 1 I , x )  

+ & ~ ( - l ) ' x ( N  + 1 I n,r  + 1 I b,,. .  . ,6/,.  . . , b,,-r I 5 x ) u b , ( x ) .  
n-r 

(A3.5) 
I = I  

By studying the Neumann expansion of x(m I n, r I b,, . . . , bn-r-l I I ,  x )  with help from 
(A3.4) and (A3.9, just as we did for cp(. . .), we can prove that x ( m  I n, r  I b, , .  . ., bn-r-l 1 
A,x)  are analytic on the lower half i. plane. As a by-product, we prove the existence of 
A(a)(co, I). 
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