Quantum inverse scattering method for the nonlinear Schrodinger model of fermions with attractive interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 224835
(http://iopscience.iop.org/0305-4470/22/22/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:05

Please note that terms and conditions apply.

Quantum inverse scattering method for the nonlinear Schrödinger model of fermions with attractive interaction

Haitao Fant§, Fu-Cho Pu \dagger and Bao-Heng Zhao \ddagger
+ Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing. China
\ddagger Graduate School, Chinese Academy of Sciences, PO Box 3908, Beijing, China

Received 22 March 1989

Abstract

The quantum inverse scattering method is applied to the nonlinear Schrödinger model of fermions with attractive interaction. Both scattering and bound-state operators are constructed. Among state operators, there are a generator of infinitely many conserved quantities and the creators of the the eigenstates of these quantities. The commutation relations and the eigenvalues of physical interest are calculated. The quantum GelfandLevitan equations are established. The Fourier transform of the connected part of the 4-point Green function and the two body S matrix are calculated explicitly.

1. Introduction

In the development of the quantum inverse scattering method, the nonlinear Schrödinger model has played an important role. The direct problem of bosons of spin 0 with repulsive coupling was solved by Faddeev and Sklyanin (1978), Sklyanin (1979) and Thacker et al (1979). The correspond inverse problem was done by Creamer et al (1980). The direct generalisation of the work of Sklyanin (1979) and Pu and Zhao (1984) to the multicomponent nonlinear Schrödinger model of bosons or fermions with repulsive coupling was made by Pu et al (1987). Other generalisations with different emphasis were made by Kulish (1980, 1985). The system consisting of both bosons and fermions was studied by Fan et al (1988).

As is well known, there are bound states in the nonlinear Schrödinger model with attractive interaction. This makes the solving of the system much more difficult. Gockeler (1981a, b) introduced the bound-state operators in solving the system with attractive coupling. Although his method is rigorous and elegant, it is too complicated to apply to the multicomponent nonlinear Schrödinger model. In this paper, we generalise the simpler and rigorous approach of Pu and Zhao (1986) to solve the multicomponent nonlinear Schrödinger system with attractive coupling. In §2, we define our model and introduce the auxiliary linear problem. We derive the commutation relations for some important operators by solving two sets of Yang-Baxter equations. Then, we construct the state operators and calculate commutation relations between them in § 3 and discuss these state operators in $\S 4$. In $\S 5$ and 6 , we derive the Gelfand-Levitan equations of our model which are the central results of this paper. Finally, we apply these results to calculate the Fourier transform of the connected part of the 4 -point Green function and the two body S matrix.
§ Present address: Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA.

2. The model and the auxiliary linear problem

Through this paper, we adopt the following convention: indices $a, b, c, d=1,2, \ldots, N$ and $l, m=1,2, \ldots, N+1$ where N is an even number; summation is taken for repeated indices.

The quantum nonlinear Schrödinger model of spin $(N-1) / 2$ is defined by the Hamiltonian

$$
\begin{equation*}
H=\int_{-x}^{x}\left\{\frac{\partial u^{+}(x)}{\partial x} \frac{\partial u(x)}{\partial x}+c u^{+}(x) u^{+}(x) u(x) u(x)\right\} \mathrm{d} x \tag{2.1}
\end{equation*}
$$

where $c<0$ is the coupling constant, $u(x)=\left(u_{1}(x), \ldots, u_{N}(x)\right)$ are the Heisenberg field operators satisfying the equal time anticommutation relations:

$$
\begin{align*}
& \left\{u_{a}^{+}(x), u_{b}(y)\right\}=\delta_{a b} \delta(x-y) \\
& \left\{u_{a}(x), u_{b}(x)\right\}=0 . \tag{2.2}
\end{align*}
$$

The vacuum state $|0\rangle$ of the system is defined by $u(x)|0\rangle=0$ and $\langle 0 \mid 0\rangle=1$.
The Zakharov-Shabat auxiliary linear problem (Zakharov and Shabat 1971) for our system is

$$
\begin{align*}
& \frac{\partial}{\hat{c} x} T(x, y \mid \lambda)=: L(x, i) T(x, y \mid \lambda): \tag{2.3}\\
& T(y, y \mid \lambda)=1
\end{align*}
$$

where ': ... :' denotes the normal order, λ is the spectral parameter and

$$
L(x, \lambda)=\mathrm{i} \lambda J / 2-\sqrt{-c} E_{N+1, a} u_{a}^{+}(x)+\sqrt{-c} E_{a, N+1} u_{a}(x)
$$

where $E_{i j}, i, j=1,2, \ldots, N+1$, and J are $(N+1) \times(N+1)$ matrices defined by

$$
\begin{aligned}
& \left(E_{i j}\right)_{l m}=\delta_{i l} \delta_{j m} \\
& J=\operatorname{diag}(1, \ldots, 1,-1)
\end{aligned}
$$

Starting with (2.3), we can obtain

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(T(x, y \mid \lambda) \otimes_{\mathrm{s}} T(x, y \mid \mu)\right)=: D(\lambda, \mu \mid x)\left[T(x, y \mid \lambda) \otimes_{\mathrm{s}} T(x, y \mid \mu)\right]: \tag{2.4}
\end{equation*}
$$

where

$$
D(\lambda, \mu \mid x)=L(x, \lambda) \otimes_{\mathrm{s}} I+I \otimes_{\mathrm{s}} L(x, \mu)+c E_{N+1, a} \otimes E_{a, N+1}
$$

where ' \otimes_{s} ' is the direct product of matrices in the graded sense, which is defined by $\left(U \otimes_{\mathrm{s}} V\right)_{i, 1: j, m}=(-1)^{p(i)[p(i)+p(i)]} U_{i j} V_{l m}$
where U and V are $(N+1) \times(N+1)$ matrices and

$$
p(l)= \begin{cases}1 & \text { if } l=N+1 \\ 0 & \text { otherwise }\end{cases}
$$

After solving the Yang-Baxter equation

$$
\begin{equation*}
R(\lambda, \mu) D(\lambda, \mu \mid x)=D(\mu, \lambda \mid x) R(\lambda, \mu) \tag{2.5}
\end{equation*}
$$

we get immediately the commutation relations

$$
\begin{equation*}
R(\lambda, \mu)\left[T(x, y \mid \lambda) \otimes_{\mathrm{s}} T(x, y \mid \mu)\right]=\left[T(x, y \mid \mu) \otimes_{\mathrm{s}} T(x, y \mid \lambda)\right] R(\lambda, \mu) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
R(\lambda, \mu)=\frac{\mathrm{ic}}{\lambda-\mu+\mathrm{ic}} I_{N^{2}}+(-1)^{p(\lambda) p(m)} \frac{\lambda-\mu}{\lambda-\mu+\mathrm{ic}} E_{l, m} \otimes E_{m, l} \tag{2.7}
\end{equation*}
$$

Now, we introduce some operators important to solving the model:

$$
\begin{align*}
& \varphi(x, i)=\lim _{y \rightarrow \infty} E(-y, i) T(y, x \mid \lambda) \tag{2.8}\\
& \chi(x, \lambda)=\lim _{y \rightarrow-\infty} T(x, y \mid i) E(y, i) \tag{2.9}
\end{align*}
$$

where $E(y, \lambda)=\exp (i \lambda y J / 2)$.
The analyticity of $\varphi(x, \lambda)$ and $\chi\left(x, \lambda_{i}\right)$ are described by the following table:

Operators	Analytic region
$\varphi_{a, m}(x, \lambda), \chi_{l, b}(x, \lambda)$	$\operatorname{Im} \lambda<0$
$\varphi_{N+1, m}(x, \lambda), \chi_{l, N+1}(x, \lambda)$	$\operatorname{Im} \lambda>0$

After some manipulation on (2.6) similar to what was used by Thacker (1982) in which the existence of the limit of φ and χ as $y \rightarrow \pm \infty$ are taken into consideration, we get the following commutation relations for $\varphi(x, \lambda)$ and $\chi(x, \lambda)$:

$$
\begin{align*}
& R_{+}(\lambda, \mu)\left[\varphi(x, \lambda) \otimes_{\mathrm{s}} \varphi(x, \mu)\right]=\left[\varphi(x, \mu) \otimes_{\mathrm{s}} \varphi(x, \lambda)\right] \frac{R(\lambda, \mu)}{\lambda-\mu} \tag{2.10}\\
& \frac{R(\lambda, \mu)}{i-\mu}\left[\chi(x, \lambda) \otimes_{\mathrm{s}} \chi(x, \mu)\right]=\left[\chi(x, \mu) \otimes_{\mathrm{s}} \chi(x, \lambda)\right] R_{-}(\lambda, \mu) \tag{2.11}
\end{align*}
$$

where

$$
\begin{aligned}
& R_{+}(\lambda, \mu)=\frac{1}{\lambda-\mu} E_{a, b} \otimes\left[\frac{\mathrm{ic}}{\lambda-\mu+\mathrm{ic}} \delta_{a b} E_{c, c}+\frac{\lambda-\mu}{\lambda-\mu+\mathrm{i} c} E_{b, a}+\mathrm{i} \pi \delta_{a b} \delta(\lambda-\mu) E_{N+1, N+1}\right] \\
&+\frac{1}{\lambda-\mu+\mathrm{i} c} E_{N+1 . a} \otimes E_{a, N+1}+\frac{\lambda-\mu-\mathrm{i} c}{(\lambda-\mu+\mathrm{i} 0+)^{2}} E_{a, N+1} \otimes E_{N+1, a} \\
&-\mathrm{i} \pi \delta(\lambda-\mu) E_{N+1 . N+1} \otimes E_{a, u} .
\end{aligned}
$$

$R_{-}(\lambda, \mu)$ can be obtained from the expression of $R_{+}(\lambda, \mu)$ by changing the sign of the δ-function term.

Similarly, we find
$R_{1}(\lambda, \mu)\left[T^{+}(x, y \mid \lambda) \otimes_{\mathrm{s}} T^{\mathrm{ST}}(x, y \mid \mu)\right]=\left[T^{\mathrm{ST}}(x, y \mid \mu) \otimes_{\mathrm{s}} T^{+}(x, y \mid \lambda)\right] R(\lambda, \mu)$
$R_{1}(\lambda, \mu)\left[\varphi^{+}(x, \lambda) \otimes_{\mathrm{s}} \varphi^{\mathrm{ST}}(x, \lambda)\right]=\left[\varphi^{\mathrm{ST}}(x, \mu) \otimes_{\mathrm{S}} \varphi^{+}(x, \lambda)\right] R_{1+}(\lambda, \mu)$
$R_{1-}(\lambda, \mu)\left[\chi^{+}(x, j) \otimes_{\mathrm{s}} \chi^{\mathrm{ST}}(x, \mu)\right]=\left[\chi^{\mathrm{ST}}(x, \mu) \otimes_{\mathrm{s}} \chi^{+}(x, i)\right] R_{1}(\lambda, \mu)$
where 'ST' is the supertranspose of matrices defined by

$$
\left(T^{\mathrm{ST}}\right)_{l m}=(-1)^{p l(l)[p(m)+1]} T_{m l}
$$

and $T^{+}(x, y \mid \dot{\lambda})=[T(x, y \mid \vec{\lambda})]^{+}$:

$$
\begin{aligned}
& R_{1}(\lambda, \mu)=E_{l, m} \otimes\left[(-1)^{p(l)+p(m)} \frac{\mathrm{i} c}{\lambda-\mu} E_{l, m}+\frac{\lambda-\mu-\mathrm{i} N c}{\lambda-\mu}(-1)^{p(l) p(m)} E_{m, l}\right] \\
& R_{1-}(\lambda, \mu)=E_{a, b} \otimes\left[\frac{\mathrm{i} c}{\lambda-\mu} E_{a . b}+\frac{\lambda-\mu-\mathrm{i} N c}{\lambda-\mu} E_{b, a}\right] \\
&+E_{N+1, a} \otimes\left[\frac{\lambda-\mu-\mathrm{i} N c}{\lambda-\mu} E_{a, N+1}+\pi|c| \delta(\lambda-\mu) E_{N+1, a}\right] \\
&+E_{a, N+1} \otimes\left[\frac{\lambda-\mu-\mathrm{i} N c}{\lambda-\mu} E_{N+1, a}-\pi|c| \delta(\lambda-\mu) E_{a, N+1}\right] \\
&-\frac{(\lambda-\mu-\mathrm{i} N c)(\lambda-\mu-\mathrm{i} c)}{(\lambda-\mu+i 0+)^{2}} E_{N+1, N+1} \otimes E_{N+1, N+1} .
\end{aligned}
$$

The relation between $R_{1_{+}}(\lambda, \mu)$ and $R_{1-}(\lambda, \mu)$ is the same as that between $R_{-}(\lambda, \mu)$ and $R_{+}(\lambda, \mu)$.

3. State operators

Just as in the nonlinear Schrödinger model of spin-0 particles, there are scattering states as well as bound states for our system when $c<0$. We start searching for the state operators corresponding to them with the following definitions:
$\varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right)=\prod_{j=1}^{n-r} \varphi_{N+1, a}\left(x, \lambda_{j}\right) \prod_{j=n-r+1}^{n} \varphi_{N+1, N+1}\left(x, \lambda_{j}\right)$
where $\lambda_{j}=\lambda+\mathrm{ic}(n-1) / 2-\mathrm{ic}(n-j)$. They are analytic with respect to λ with sufficient large $\operatorname{Im} \lambda$. An important property of $\varphi(\ldots)$ is
$\varphi\left(n, r\left|P a_{1}, P a_{2}, \ldots, P a_{n-r}\right| \lambda, x\right)=(-1)^{[P]} \varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right)$
where P is a permutation of a_{1}, \ldots, a_{n-r} and $(-1)^{[P]}$ is the sign of it. This antisymmetric property can be justified by
$\varphi_{N+1, l}(x, \lambda+\mathrm{i} c) \varphi_{N+1 . m}(x, \lambda)=(-1)^{[p(i)+1][p(m)+1]} \varphi_{N+1, m}(x, \lambda+\mathrm{i} c) \varphi_{N+1, t}(x, \lambda)$
which is derived from (2.10). Now, (3.1) admits the following general Neumann expansion

$$
\begin{align*}
& \varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right) \\
& =\sum_{k=0}^{\infty} \sum_{1 \leq b_{1} \leq \ldots \leq b_{k} \leq N} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n-r} \mathrm{~d} y_{1} \ldots \mathrm{~d} y_{k} \mathrm{~d} z_{1} \ldots \mathrm{~d} z_{k} \\
& \times h_{k}\left(n, r\left|\begin{array}{cc}
a_{1} \\
x_{1}
\end{array}, \ldots, \begin{array}{l}
a_{n-r} \\
x_{n-r}
\end{array}, \begin{array}{l}
y_{1} \\
y_{1}
\end{array}, \ldots, \begin{array}{l}
b_{k} \\
y_{k}
\end{array}\right| \begin{array}{l}
b_{k} \\
y_{k}
\end{array}, \ldots, b_{1} \mid \lambda, x\right) \\
& \times u_{a_{1}}^{+}\left(x_{1}\right) \ldots u_{a_{n-r}}^{+}\left(x_{n-r}\right) u_{b_{1}}^{+}\left(y_{1}\right) \ldots u_{b_{k}}^{+}\left(x_{k}\right) u_{b_{k}}\left(z_{k}\right) \ldots u_{b_{1}}\left(z_{1}\right) \tag{3.4}
\end{align*}
$$

where $h_{k}(|\ldots| \ldots \mid \lambda, x)$ are antisymmetric with respect to the integral variables correspond to the indices in the same 'box'. By using the Gockeler (1981a) method, and the equation

$$
\begin{align*}
& \frac{\partial}{\partial x} \varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right) \\
&= \frac{1}{2}[(2 r-n)+\mathrm{i} c(n-r) r] \varphi\left(n, r\left|a_{1}, \ldots a_{n-r}\right| \lambda, x\right) \\
&+\sum_{n=1}^{n-r}(-1)^{j-1} \sqrt{-c} u_{a_{j}}^{+}(x) \varphi\left(n, r+1\left|a_{1}, \ldots, \bar{a}_{j}, \ldots, a_{n-r}\right| \lambda, x\right) \\
&-\sqrt{-c} r \varphi\left(n, r-1\left|a_{1}, \ldots a_{n-r}, a\right| \lambda, x\right) u_{a}(x) \tag{3.5}
\end{align*}
$$

(where the bar on the index a_{j} means the absence of it), as well as the boundary condition

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \exp (\mathrm{i} \lambda n x / 2) \varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right)=\delta_{n, r} \tag{3.6}
\end{equation*}
$$

we can prove that $h_{k}(|\ldots| \ldots \mid \lambda, x)$ are analytic with respect to λ and when $c<0$, $\operatorname{Im} \lambda>0$

$$
\begin{align*}
n_{k}(n, r|\ldots| & \ldots \mid \lambda, x) \\
& \leq C_{k}(n, r) \prod_{j=1}^{n-r} \theta\left(x_{j}>x\right) \prod_{j=1}^{k} \theta\left(y_{j}>x\right) \theta\left(z_{j}>x\right) \exp \{[c(n-r) r / 2-r \operatorname{Im} \lambda] x\} \tag{3.7}
\end{align*}
$$

where $k=0,1, \ldots ; r=0,1, \ldots, n$ and $C_{k}(n, r)$ are constants. This implies the analyticity of $\varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right)$ on the upper half λ plane when $c<0$. Furthermore, we have

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right)=0 \quad \text { for } r \neq 0, n \tag{3.8}
\end{equation*}
$$

We define the state operators $A_{n}(\lambda)$ and $B^{+}(\ldots)$ as the following:

$$
\begin{align*}
& A_{n}(\lambda)=\lim _{x \rightarrow-x} \exp (\mathrm{i} \lambda n x / 2) \varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| \lambda, x\right) \tag{3.9}\\
& B\left(\lambda|n| a_{1}, \ldots, a_{n}\right)=\lim _{x \rightarrow-x} \exp (-\mathrm{i} \lambda n x / 2) \varphi\left(n, 0\left|a_{1}, \ldots, a_{n}\right| \lambda, x\right) \tag{3.10}
\end{align*}
$$

These state operators satisfy the following commutation relations which we will derive in appendix 1:

$$
\begin{align*}
& A_{n}(i) A_{m}(\mu)=A_{m}(\mu) A_{n}(i) \tag{3.11}\\
& A_{n}(i) B^{+}\left(\mu|n| a_{1}, \ldots, a_{m}\right) \\
& =\prod_{k=1}^{\bar{n}} \frac{i-\mu-\mathrm{i} c(|n-m|+2 k) / 2}{i-\mu-\mathrm{i} c(n+m-2 k) / 2+\mathrm{i} 0+} B_{m}^{+}\left(\mu|n| a_{1}, \ldots, a_{m}\right) A_{n}(i) \tag{3.12}
\end{align*}
$$

where $\bar{n}=\min (m, n) ;$

$$
\begin{align*}
A_{n}(\lambda) B(\mu \mid & \left.n \mid a_{1}, \ldots, a_{m}\right) \\
& =\prod_{k=1}^{\bar{n}} \frac{\lambda-\mu-\mathrm{i} c(n+m-2 k) / 2}{\lambda-\mu+\mathrm{i} c(|n-m|+2 k) / 2} B_{m}\left(\mu|n| a_{1}, \ldots, a_{m}\right) A_{n}(\lambda) . \tag{3.13}
\end{align*}
$$

We list the commutation relations for $A_{n}(i), B(\ldots), B^{+}(\ldots)$ etc in appendix 1 .

4. The eigenstates of the system

Since $A_{n}(\lambda)$ and $A_{m}(\mu)$ commute, the expansion of $\ln A_{1}(\lambda)$ near $|\lambda|=\infty$

$$
\begin{equation*}
\ln A_{1}(\lambda)=\sum_{k=0}^{x} \frac{C_{k}}{(\mathrm{i} \lambda)^{k}} \tag{4.1}
\end{equation*}
$$

will provide us with a family of commutative operators $\left\{C_{k} ; k=1,2, \ldots\right\}$. Further computation shows that the number of particles

$$
N=-C_{1} / c
$$

the total momentum

$$
P=\mathrm{i} C_{2} / c-\mathrm{i} C_{1} / 2
$$

the total energy

$$
H=C_{3} / c-C_{2}+c C_{1} / 6
$$

and therefore $\left\{C_{k} ; k=1,2, \ldots,\right\}$ is a family of conserved quantities of our system which commute with each other.

Another kind of conserved quantities are generated by

$$
\begin{equation*}
T_{a, b}(\lambda)=\lim _{x \rightarrow-x} \exp (-\mathrm{i} \lambda x / 2) \varphi_{a, b}(x, \lambda) \tag{4.2}
\end{equation*}
$$

in the same way as (4.1). Among these quantities there are

$$
N_{a}=\int_{-x}^{x} \mathrm{~d} x u_{a}^{+}(x) u_{a}(x)
$$

(a is fixed), namely the number of particles with a fixed value of the z component of spin.

Equation (3.10) indicates that

$$
\begin{equation*}
B^{+}\left(\lambda_{1}\left|n_{1}\right| a_{1}^{(1)}, \ldots, a_{n_{1}}^{(1)}\right) \ldots B^{+}\left(\lambda_{k}\left|n_{k}\right| a_{1}^{(k)}, \ldots, a_{n_{1}}^{(k)}\right)|0\rangle \tag{4.3}
\end{equation*}
$$

where $k=1,2, \ldots$ are the eigenstates of $A_{n}(\lambda)$ and thus common eigenstates of the infinite number of conserved quantities $C_{n}, n=1,2, \ldots$. The eigenvalues of physical interest are given by the following:

$$
\begin{align*}
& {\left[N, B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right)\right]=n B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right) } \tag{4.4a}\\
& {\left[P, B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right)\right]=n \lambda B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right) } \tag{4.4b}\\
& {\left[H, B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right)\right]=\left[n \lambda^{2}-\frac{c^{2}}{12}\left(n^{3}-n\right)\right] B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right) } \tag{4.4c}\\
& {\left[H, A_{n}(\lambda)\right] }=0 . \tag{4.4d}
\end{align*}
$$

This is equivalent to saying that the action of $B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right)$ on a state of our model is to add to the state an n-particle part (bound part if $n>1$) with total momentum $n \hat{i}$ and total energy $\left[n \hat{i}^{2}-\frac{1}{12} c^{2}\left(n^{3}-n\right)\right]$, and the z component of the total $\operatorname{spin}\left(\sum_{j=1}^{n} a_{j}\right)-n(N+1) / 2$.

From (4.4c) and (4.4d), we derive the following time evolution relations for $B^{+}(\ldots)$ and $A_{n}(\lambda)$:

$$
\begin{align*}
B^{+}\left(\mu\left|a_{1}, \ldots, a_{n}\right| t\right) & =\exp (\mathrm{i} H t) B^{+}\left(\mu \mid a_{1}, \ldots, a_{n}\right) \exp (-\mathrm{i} H t) \\
& =\exp \left\{\mathrm{it}\left[n \mu^{2}-c^{2}\left(n^{3}-n\right) / 12\right]\right\} B^{+}\left(\mu \mid a_{1}, \ldots, a_{n}\right) \tag{4.5}
\end{align*}
$$

$$
\begin{equation*}
A_{n}(\dot{\lambda}, t)=A_{n}(i) \tag{4.6}
\end{equation*}
$$

Another fact implied from (3.2) is that there are only $2^{N}-1$ different $B^{+}(\lambda|n|$ $\left.a_{1}, \ldots, a_{n}\right) ; N$ of them correspond to the scattering states of the system while the others correspond to the bound states.

In the following, we consider the states (4.3) as a complete base of the state space of our system and, therefore, we can prove equations and the analyticity of operators by evaluating the actions of these operators on the states (4.3)

5. Gelfand-Levitan equations (1)

We can prove the following by the definition (2.3) of $T(x, y \mid \lambda)$ that when $x \geq z \geq y$

$$
\begin{equation*}
T(x, z \mid \lambda) T(z, y \mid \lambda)=T(x, y \mid \lambda) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{-1}(x, y \mid \lambda-\mathrm{i} c)=\exp [c(x-y) / 2] J T^{+}(x, y \mid \lambda) J \tag{5.2}
\end{equation*}
$$

Equation (5.1) tells us that $\varphi(x, \lambda) \chi(x, \hat{\lambda})$ is a constant with respect to x and we denote it by

$$
\begin{equation*}
T(\lambda)=\varphi(x, \lambda) \chi(x, \lambda) . \tag{5.3}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
T_{N+1 . N+1}(\lambda)=A_{1}(\lambda) \tag{5.4}
\end{equation*}
$$

If we define

$$
\begin{align*}
& T^{(+)}(x, \lambda)=E(x, \lambda) \varphi(x, \lambda) \tag{5.5}\\
& T^{(-)}(x, \lambda)=\chi(x, \lambda) E(-x, \lambda) \tag{5.6}\\
& \left(\phi^{(l)}(x, \lambda)\right)^{T}=\left(T_{l, 1}^{(+)}(x, \lambda), \ldots, T_{l, N+1}^{(+)}(x, \lambda)\right) \tag{5.7}\\
& \left(\psi^{(l)}(x, \lambda)\right)^{T}=\left(T_{1, l}^{(-)+}(x, \lambda), \ldots, T_{N+1, l}^{(-)+}(x, \lambda)\right) \tag{5.8}
\end{align*}
$$

then (5.1) and (5.2) lead us to an Izergin-Korepin relation (cf Izergin and Korepin 1981) for the Jost functions $\phi^{(t)}(x, \lambda)$ and $\psi^{(l)}(x, \lambda)$:

$$
\begin{align*}
& G(x, \lambda)=A_{1}^{-1}(\hat{\lambda}-\mathrm{i} c) \phi^{(N+1)}(x, \dot{\lambda}-\mathrm{i} c) \\
&= B^{+}(\lambda|1| a) A_{1}^{-1}(\lambda) \psi^{(a)}(x, \lambda) \exp (-\mathrm{i} \hat{\lambda} x)+\psi^{(N+1)}(x, \lambda) \tag{5.9}\\
& \frac{\partial}{\partial x} G(x, \lambda)=\left(\begin{array}{cc}
-\mathrm{i} \hat{\lambda} I_{N} & \sqrt{-c} u^{+}(x) \\
\sqrt{-c} u(x) & 0
\end{array}\right) G(x, \lambda): \\
&+c e_{b} F_{N+1}^{(a)}(x, \lambda) T_{N+1, b}^{(+)}(x, \lambda) A_{1}^{-1}(\lambda) T_{N+1, a}^{(-)+}(x, \lambda) \tag{5.10}
\end{align*}
$$

where $e_{b}^{T}=(0, \ldots, 0,1,0, \ldots, 0)$ are $(N+1)$-dimensional vectors with b th component equal to 1 , and
$F_{N+1}^{(l)}(x, \lambda)=-B^{+}(\lambda|1| a) A_{1}^{-1}(\lambda) T_{N+1, N+1}^{(-)}(x, \lambda) \exp (-\mathbf{i} \lambda x)+T_{N+1, a}^{(-)}(x, \lambda)$.
This hints to us to introduce
$F^{(a)}(x, \lambda)=B^{+}(\lambda|1| a) A_{1}^{-1}(\lambda) J \bar{\psi}^{(N+1)}(x, \lambda) \exp (-\mathrm{i} \lambda x)+\bar{\psi}^{(a)}(x, \lambda)$
(where $\bar{\psi}^{(l)}(x, i)=\left[\psi^{(l)+}(x, i)\right]^{T}$) to form a complete group of differential equations along with (5.9):

$$
\begin{align*}
\frac{\partial}{\partial x} F^{(a)}(x, \lambda)= & \left(\begin{array}{cc}
0 & \sqrt{-c} u(x) \\
-\sqrt{-c} u^{+}(x) & -\mathrm{i} \lambda
\end{array}\right) F^{(a)}(x, \hat{\lambda}): \\
& -c e_{N+1} F_{N+1}^{(a)}(x, \lambda) T_{N+1, b}^{(+)}(x, \lambda) A_{1}^{-1}(x, \lambda) T_{b, N+1}^{(-)}(x, \lambda) . \tag{5.12}
\end{align*}
$$

The boundary conditions of $G(x, \lambda)$ and $F^{(a)}(x, \lambda)$ at $x=\infty$ are

$$
\begin{align*}
& G(\infty, \lambda)=e_{N+1}\left[B^{+}(\lambda|1| a) A_{1}^{-1}(\lambda) B(\lambda|1| a)+A_{1}^{+}(\lambda)\right] \tag{5.13a}\\
& \bar{F}^{(a)}(\infty, \lambda)=e_{b}\left[T_{b, a}^{+}(\lambda)+T_{b, N+1}^{+}(\lambda) A_{1}^{-1}(\lambda) B(\lambda|1| a)\right] . \tag{5.13b}
\end{align*}
$$

When $i \neq \mu$, we have

$$
\begin{aligned}
& G(\infty, \lambda) B^{+}\left(\mu|n| a_{1}, \ldots, a_{n}\right)=\frac{\lambda-\mu-\mathrm{i} c(n+1) / 2}{\lambda-\mu+\mathrm{i} c(n-1) / 2} B^{+}\left(\mu|n| a_{1}, \ldots, a_{n}\right) G(\infty, \lambda) \\
& \begin{array}{l}
\bar{F}^{(a)}(\infty, \lambda) B^{+}\left(\mu|n| a_{1}, \ldots, a_{n}\right) \\
= \\
\quad B^{+}\left(\mu|n| a_{1}, \ldots, a_{n}\right) \bar{F}_{b}^{(a)}(\infty, \lambda) \\
\\
\quad+\delta_{a, a_{i}} \frac{(-1)^{j} \mathrm{i} c}{\lambda-\mu+\mathrm{i} c(n-1) / 2} B^{+}\left(\mu|n| d, a_{1}, \ldots, \bar{a}_{l}, \ldots, a_{n}\right) \bar{F}_{b}^{(d)}(\infty, \lambda)
\end{array} \\
& A_{1}^{-1}(\lambda) B^{+}\left(\mu|n| a_{1}, \ldots, a_{n}\right)=\frac{\lambda-\mu-\mathrm{i} c(n-1) / 2}{\lambda-\mu+\mathrm{i} c(n+1) / 2} B^{+}\left(\mu|n| a_{1}, \ldots, a_{n}\right) A_{1}^{-1}(\lambda)
\end{aligned}
$$

We conclude from these that $G(\infty, i), F^{(\prime)}(\infty, \lambda)$ and $A^{-1}(\lambda)$ are piecewise analytic on the upper half i plane with discontinuities across $\operatorname{Im} \lambda=-c n / 2$ where $n=1,2, \ldots, N-1$ for $G(\infty, \lambda)$ and $F^{(\lambda)}(\infty, i)$ while $n=2,3, \ldots, N+1$ for $A^{-1}(\lambda)$. Thus, we can expand $G(x, i)$ and $F^{(a)}(x, \lambda)$ as we did for $\varphi(\ldots)$ in $\S 3$ and analyse the analyticity of $G(x, i)$ and $F^{(a)}(x, \lambda)$ with the help of the differential equations (5.10) and (5.12). We can find that $G(x, \lambda)$ and $F^{(a)}(x, \lambda)$ are analytic except when $\operatorname{Im} \lambda=-c n / 2, n=1,2, \ldots, N+1$. On the other hand, the equation

$$
G(x, \lambda)=A^{-1}(\lambda-\mathrm{i} c) \phi^{(N+1)}(x, \lambda-\mathrm{i} c)
$$

enables us to rule out two of them: $\operatorname{Im} \lambda=-c N / 2,-c(N+1) / 2$ for $G(x, \lambda)$.
Now, using the analyticity of $G(x, i)$ and $F^{(a)}(x, i)$ as well as their asymptotic behaviour

$$
\begin{aligned}
& G(x, i) \sim e_{N+1}+O\left(\frac{1}{i}\right) \\
& F^{(a)}(x, i) \sim e_{a}+O\left(\frac{1}{i}\right)
\end{aligned}
$$

we can study some contour integrals and write out a series of integral equations

$$
\begin{align*}
& \psi^{(N+1)}(x, \lambda)= e_{N+1}-\frac{1}{2 \pi i} \int_{-x}^{x} d \mu \frac{B^{+}(\mu|1| a) A_{1}^{-1}(\mu) \psi^{(a)}(x, \mu)}{\lambda-\mu-\mathrm{i} 0+} \exp (-\mathrm{i} \mu x) \\
&-\frac{1}{2 \pi \mathrm{i}} \sum_{n=1}^{N-1} \int_{-x}^{x} \mathrm{~d} \mu \frac{\operatorname{disc} G(x, \mu-\mathrm{i} c n / 2)}{\lambda-\mu+\mathrm{i} c n / 2} \tag{5.14a}\\
& \psi^{(a)}(x, \lambda)=e_{a}+\frac{1}{2 \pi \mathrm{i}} \int_{-x}^{x} \mathrm{~d} \mu \frac{J \psi^{(N+1)}(x, \mu) A_{1}^{-\mathrm{i}}(\mu) B(\mu|1| a)}{\lambda-\mu+\mathrm{i} 0+} \exp (\mathrm{i} \mu x) \\
&-\frac{1}{2 \pi \mathrm{i}} \sum_{n=1}^{N+1} \int_{-x}^{x} \mathrm{~d} \mu \frac{\operatorname{disc} \bar{F}^{(a)}(x, \mu+\mathrm{inc} / 2)}{\lambda-\mu-\mathrm{i} c n / 2} \tag{5.14b}
\end{align*}
$$

where $\operatorname{disc} G(x, \mu)=G(x, \mu+\mathrm{i} 0+1-G(x, \mu-\mathrm{i} 0+)$.

6. Gelfand-Levitan equations (2)

6.1. The expression of disc (x, i)

In the previous section, we obtained a series of integral equations of our system. But, we still do not know much about disc $G(\ldots)$ and $\operatorname{disc} F^{(a)}(\ldots)$. We are going to find a expression for them in this section.

First of all, we can prove that disc $G(x, i)$ can be expressed in the form
$\operatorname{disc} G^{T}(x, \lambda)=\left(H_{1}(x, \lambda), \ldots, H_{N}(x, \dot{\lambda})\right)\left(\begin{array}{c}\psi^{(1) T}(x, \lambda) \\ \vdots \\ \psi^{(1) T}(x, \lambda)\end{array}\right) \exp (-i \lambda x)$
by using $\operatorname{disc} A^{-1}(\lambda) \times A(\lambda)=0$ and the following consequence of (5.2):

$$
\begin{array}{r}
\left(\begin{array}{ccc}
T_{11}^{(-)+}(x, \lambda) & \ldots & T_{N 1}^{(-)+}(x, \lambda) \\
\vdots & \ldots & \vdots \\
T_{1 N}^{(-)+}(x, \lambda) & \ldots & T_{N N}^{(-)+}(x, \lambda)
\end{array}\right)^{-1} \times\left(\begin{array}{c}
T_{N+1.1}^{(-)+}(x, \lambda) \\
\vdots \\
T_{N+1 . N+1}^{(-)+}(x, \lambda)
\end{array}\right) \\
=- \tag{6.1.2}\\
\\
=\left(\begin{array}{c}
T_{1, N+1}^{(-)}(x, \lambda-\mathrm{i} c) \\
\vdots \\
T_{N, N+1}^{(-)}(x, \lambda-\mathrm{i} c)
\end{array}\right)\left[T_{N, N+1}^{(-)}(x, \lambda-\mathrm{i} c)\right]^{-1}
\end{array}
$$

Taking $\partial / \partial x$ on both sides
$\operatorname{disc} A_{1}^{-1}(\lambda-\mathrm{ic}) \phi^{(\lambda+1 / T}(x, \lambda-\mathrm{i} c)=\operatorname{disc} G^{T}(x, \lambda)$

$$
=\left(H_{1}(x, \hat{\lambda}), \ldots, H_{N}(x, \hat{\lambda})\right)\left(\begin{array}{c}
\phi^{(1) T}(x, \hat{\lambda}) \tag{6.1.3}\\
\vdots \\
\psi^{(\mathcal{N}) T}(x, \hat{\lambda})
\end{array}\right) \exp (-\mathrm{i} \dot{\lambda} x)
$$

and using
$u_{b}^{+}(x)\left(\begin{array}{c}\left.\psi^{(1) T} x, \lambda\right) \\ \vdots \\ \psi^{(N) T}(x, \lambda)\end{array}\right) J=\left(\begin{array}{c}\psi^{(1) T}(x, \lambda) \\ \vdots \\ \psi^{(N) T}(x, \lambda)\end{array}\right)\left[u_{b}^{+}(x)-\frac{1}{2} \sqrt{-c} E_{b, N+1}\right]$
$u_{h}^{+}(x) \phi^{(N+1)+}(x, \lambda) J=-\phi^{(N+1)+}(x, \lambda)\left[u_{b}^{+}(x)-\frac{1}{2} \sqrt{-c} E_{b, N+1}\right]$
and (5.1) and (5.3), we find that for arbitrary y

$$
\left(\frac{\hat{c}}{\partial x} H_{1}(x, \lambda), \ldots, \frac{\hat{\partial}}{\partial x} H_{N}(x, \lambda)\right)\left(\begin{array}{c}
\psi^{(1) T}(y, \lambda) \tag{6.1.6}\\
\vdots \\
\psi^{(N) T}(x, \lambda)
\end{array}\right)=0
$$

This means that $H_{a}(x, \lambda)$ are constants with respect to x and therefore

$$
\operatorname{disc} G^{T}(x, \lambda)=\left(H_{1}(\lambda), \ldots, H_{N}(\lambda)\right)\left(\begin{array}{c}
\psi^{(1) T}(x, \lambda) \tag{6.1.7}\\
\vdots \\
\psi^{(N) T}(x, \lambda)
\end{array}\right) \exp (-\mathrm{i} \lambda x) .
$$

On the other hand, it can be shown by calculating the eigenvalues of $G(x, \lambda)$ corresponding to (4.3) that

$$
\begin{align*}
\operatorname{disc} G(\propto, \lambda & -\mathrm{ic}(n-1) / 2) \\
& =e_{N+1} B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right) A_{n}^{-1}(\lambda)\left(A_{n-1}^{+}(\lambda-\mathrm{i} c / 2)\right)^{-1} B\left(\lambda|n| a_{1}, \ldots, a_{n}\right) . \tag{6.1.8}
\end{align*}
$$

This equation and the definition of $B^{+}(\ldots)$ lead us to the conjecture that

$$
\begin{align*}
& \operatorname{disc} G(x, \lambda-\mathrm{i} c(n-1) / 2) \\
&= B^{+}\left(\lambda|n| a, a_{1}, \ldots, a_{n-1}\right) \times A_{n}^{-1}(\lambda)\left[A_{n-1}^{+}(\lambda+\mathrm{i} c / 2)\right]^{-1} \\
& \times B\left(\lambda+\mathrm{ic} / 2|n-1| a_{1}, \ldots, a_{n-1}\right) \psi^{(a)}(x, \lambda-\mathrm{i} c(n-1) / 2) \\
&\left.\times \exp _{1}-\mathrm{i} x[\lambda-\mathrm{i} c(n-1) / 2]\right\} \tag{6.1.9}
\end{align*}
$$

that is

$$
\begin{equation*}
H_{a}(\lambda-\mathrm{i} c(n-1) / 2)=R^{+}\left(\lambda|n| a, a_{1}, \ldots, a_{n-1}\right) R\left(\lambda+\mathrm{i} c / 2|n-1| a_{1}, \ldots, a_{n-1}\right) \tag{6.1.10}
\end{equation*}
$$

where

$$
R^{+}\left(i|n| a_{1}, \ldots, a_{n}\right)=B^{+}\left(i|n| a_{1}, \ldots, a_{n}\right) A_{n}^{-1}(i)
$$

In appendix 2 , we will prove this conjecture and justify the expression

$$
\sum_{P}(-1)^{[P]} B\left(\lambda+\mathrm{i} c / 2|n-1| P a_{1}, \ldots, P a_{n-1}\right) \psi^{\left(P a_{n}\right)}(x, \lambda-\mathrm{i} c(n-1) / 2)
$$

as the analytic continuation of

$$
\sum_{P}(-1)^{[P]} B\left(\lambda|n-1| P a_{1}, \ldots, P a_{n-1}\right) \psi^{\left(P a_{n}\right)}(x, \lambda-\mathrm{i} c n / 2)
$$

where P are the permutations of a_{1}, \ldots, a_{n}.

6.2. The Gelfand-Levitan equations

By computing the following:

$$
u_{b}^{+}(x) G(x, \lambda)+J G(x, i) u_{b}^{+}(x)
$$

we find the relation between $H_{a}(\lambda)$ and $\operatorname{disc} F_{(b)}(x, \lambda)$:

$$
\begin{align*}
& \left(\left\{u_{b}(x), H_{1}(\hat{\lambda})\right\}, \ldots,\left\{u_{b}(x), H_{1}(\lambda)\right\}\right)\left(\begin{array}{c}
\psi^{(1) T}(y, \lambda) \\
\vdots \\
\psi^{(N) T}(y, \lambda)
\end{array}\right) \exp (-i \lambda x) \\
& \quad=\sqrt{-c} \operatorname{disc}\left[\left(F_{N+1}^{(1)}(x, \lambda), \ldots, F^{(N)}(x, i)\right) T_{N+1, h}^{(+1}(x, \lambda) A_{1}^{-1}(\hat{\lambda})\right]\left(\begin{array}{c}
\psi^{(1) T}(y, \lambda) \\
\vdots \\
\psi^{(N) T}(y, \lambda)
\end{array}\right) \tag{6.2.1}
\end{align*}
$$

This means that if the action of one of the $\left\{u_{b}(x), H_{a}(\lambda)\right\} \exp (-\mathrm{i} \lambda x / 2)$ and

$$
\operatorname{disc}\left[F^{(a)}(x, \lambda) T_{N+1, b}^{(+)}(x, \lambda) A_{1}^{-1}(\lambda)\right]
$$

on the states

$$
\begin{equation*}
\int_{-\infty}^{\infty} \ldots \int_{-x}^{\infty} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{m} \prod_{j=1}^{m} \theta\left(y<x_{j}\right) g\left(y ; x_{1}, \ldots, x_{m}\right) u_{a_{1}}^{+}(x) \ldots u_{a_{m}}^{+}(x)|0\rangle \tag{6.2.2}
\end{equation*}
$$

is well defined, then so is the other and they are equal:

$$
\begin{equation*}
\left\{u_{b}(x), H_{a}(\lambda)\right\} \exp (-\mathrm{i} \lambda x / 2)=\operatorname{disc}\left[F^{(a)}(x, \lambda) T_{N+1, b}^{(+)}(x, \lambda) A_{1}^{-1}(\hat{\lambda})\right] . \tag{6.2.3}
\end{equation*}
$$

This conclusion leads us to the discovery that if

$$
\begin{equation*}
\Delta^{(a)}(x, \lambda)=H_{a}(\lambda) J \bar{\psi}^{(N+1)}(x, \lambda) \tag{6.2.4}
\end{equation*}
$$

is well defined, then

$$
\begin{align*}
\frac{\partial}{\partial x}\left[\Delta^{(a)}(x, \lambda)\right. & \left.-\operatorname{disc} F^{(a)}(x, \lambda)\right] \\
& =:\left(\begin{array}{cc}
0 & \sqrt{-c} u(x) \\
-\sqrt{-c} u^{+}(x) & -\mathrm{i} \lambda
\end{array}\right)\left[\Delta^{(a)}(x, \lambda)-\operatorname{disc} F^{(a)}(x, \lambda)\right]: \tag{6.2.5}
\end{align*}
$$

On the other hand, after evaluating the action of $\Delta^{(a)}(\infty, i)+\operatorname{disc} \bar{F}^{(a)}(\infty, i)$ on states (4.3), we find that it is zero. According to the uniqueness of the initial value problem of (6.2.5), it follows that

$$
\begin{align*}
& \operatorname{disc} \bar{F}^{(a)}(x, \lambda+\mathrm{i} c(n-1) / 2) \\
&= J \psi^{(N+1)}(x, \lambda+\mathrm{i} c(n-1) / 2) R^{+}\left(\lambda-\mathrm{i} c / 2|n-1| a_{1}, \ldots, a_{n-1}\right) \\
& \times R\left(\lambda|n| a, a_{1}, \ldots, a_{n-1}\right) . \tag{6.2.6}
\end{align*}
$$

We accomplish the above derivation by proving, in appendix 3 , that $\Delta^{(a)}(x, \lambda)$ and $\Delta^{(a)}(x, \lambda)$ are well defined. Now, we can replace the $\operatorname{disc} G(x, \lambda)$ and $\operatorname{disc} F(x, \lambda)$ in (5.14) by (6.2.6) and (6.1.9) and obtain the Gelfand-Levitan equations of our system:

$$
\begin{align*}
\psi^{(N+1)}(x, \lambda)= & e_{N+1}-\frac{1}{2 \pi \mathrm{i}} \sum_{n=1}^{N} \int_{-x}^{x} \mathrm{~d} \mu \frac{\exp \{\mathrm{ix}[\mu-\mathrm{i} c(n-1) / 2]\}}{\lambda-\mu+\mathrm{i} c(n-1) / 2-\mathrm{i} 0+} \\
& \times R^{+}\left(\mu|n| a, a_{1}, \ldots, a_{n-1}\right) R\left(\mu+\mathrm{i} c / 2|n-1| a_{1}, \ldots, a_{n-1}\right) \\
& \times \psi^{(\mu)}(x, \lambda-\mathrm{i} c(n-1) / 2) \tag{6.2.7a}\\
\psi^{(\omega)}(x, \lambda)=e_{a} & +\frac{1}{2 \pi \mathrm{i}} \sum_{n=1}^{N} \int_{-x}^{x} \mathrm{~d} \mu \frac{\exp \{\mathrm{ix}[\mu+\mathrm{ic}(n-1) / 2]\}}{\lambda-\mu-\mathrm{i} c(n-1) / 2+\mathrm{i} 0+} J \psi^{(N+1)}(x, \lambda+\mathrm{i} c(n-1) / 2) \\
& \times R^{+}\left(\mu-\mathrm{i} c / 2|n-1| a_{1}, \ldots, a_{n-1}\right) R\left(\mu|n| a, a_{1}, \ldots, a_{n-1}\right) \tag{6.2.7b}
\end{align*}
$$

Expanding the $(N+1)$ th component of $\psi^{(a)}(x, \lambda)$ near $\lambda=\infty$, we find that

$$
\begin{equation*}
\psi_{N+1}^{(a)}(x, \lambda)=\frac{\mathrm{i} \sqrt{-c}}{\lambda} u_{b}(x)+\mathrm{O}\left(\frac{1}{\lambda^{2}}\right) \tag{6.2.8}
\end{equation*}
$$

Applying (6.2.8) and (4.5) to (6.2.7), we find the time evolution for the Heisenberg field operators:

$$
\begin{align*}
u_{u}(x, t)=\frac{1}{2 \pi \sqrt{-c}} & \int_{-x}^{x} \mathrm{~d} \mu R(\mu|1| a) \exp \left(\mathrm{i} \mu x-\mathrm{i} \mu^{2} t\right) \\
& -\frac{1}{(2 \pi)^{3} \sqrt{-c}} \int_{-x}^{x} \int_{-x}^{\infty} \int_{-x}^{x} \mathrm{~d} \mu_{1} \mathrm{~d} \mu_{2} \mathrm{~d} \mu_{3} \\
& \times\left[\exp \left[\mathrm{ix}\left(\mu_{1}+\mu_{3}-\mu_{2}\right)+\mathrm{it}\left(\mu_{1}^{2}-\mu_{1}^{2}-\mu_{3}^{2}\right)\right]\right. \\
& \left.\times \frac{R^{+}\left(\mu_{2}|1| b\right) R\left(\mu_{3}|1| b\right) R\left(\mu_{1}|1| a\right)}{\left(\mu_{2}-\mu_{1}+\mathrm{i} 0+\right)\left(\mu_{3}-\mu_{2}-\mathrm{i} 0+\right)}\right]-\frac{\sqrt{-c}}{(2 \pi)^{2}} \int_{-\infty}^{x} \int_{-\infty}^{\infty} \mathrm{d} \mu_{1} \mathrm{~d} \mu_{2} \\
& \times\left[\exp \left[\mathrm{ix}\left(2 \mu_{1}-\mu_{2}\right)+\mathrm{it}\left(\mu_{2}^{2}-2 \mu_{1}^{2}+3 c^{2}\right)\right] \frac{R^{+}\left(\mu_{2}|1| b\right) R\left(\mu_{1}|2| b, a\right)}{\left(\mu_{2}-\mu_{1}\right)^{2}+c^{2} / 4}\right] \\
& +\ldots \tag{6.2.9}
\end{align*}
$$

By using the above results, we can calculate explicitly the Fourier transformation of the connected part of the 4 -point Green function and the two body S matrix. They are

$$
G^{4 c}=\frac{-8 \pi^{2} \mathrm{i} c\left[1+(-1)^{j}\right] \delta\left(k_{1}+k_{2}-k_{1}^{\prime}-k_{2}^{\prime}\right) \delta\left(\omega_{1}+\omega_{2}-\omega_{1}^{\prime}-\omega_{2}^{\prime}\right)}{\Pi_{j=1}^{2}\left[\left(k_{j}^{2}-\omega_{j}-\mathrm{i} 0+\right)\left(k_{j}^{\prime 2}-\omega_{j}^{\prime}-\mathrm{i} 0+\right)\right]\left(1+\mathrm{i} c \sigma^{-1}\right)}
$$

and

$$
S=(-1)^{J} \frac{\mathrm{ic}}{\lambda-\mu+\mathrm{ic}}-\frac{\lambda-\mu}{\lambda-\mu+\mathrm{ic}}
$$

respectively, where J is the total spin of the two particle states and

$$
\sigma=\left[2\left(\omega_{1}+\omega_{2}\right)-\left(k_{1}+k_{2}\right)^{2}\right]^{1 / 2}
$$

Appendix 1. The commutation relations of state operators

A natural way to get the commutation relations for state operators is to calculate the corresponding relations for $\varphi(\ldots)$. For example, we study the commutation relation between $\varphi(n, n \mid \lambda, x)$ and $\varphi\left(m, 0\left|a_{1}, \ldots, a_{m}\right| \mu, x\right)$ in the attempt to find the one between $A_{n}(\lambda)$ and $B\left(\mu|m| a_{1}, \ldots, a_{m}\right)$.

Lemma.

$$
\varphi\left(n, r\left|a_{1}, \ldots, a_{n-r}\right| i, x\right) \varphi\left(m, s\left|b_{1}, \ldots, b_{m-s}\right| \mu, x\right)
$$

can be expressed by the linear combination of

$$
\varphi\left(m, s^{\prime}\left|b_{1}^{\prime}, \ldots, b_{m-s^{\prime}}^{\prime}\right| \mu, x\right) \varphi\left(n, r^{\prime}\left|a_{1}^{\prime}, \ldots, a_{n-r^{\prime}}^{\prime}\right| \lambda, x\right)
$$

where $b_{1}^{\prime}, \ldots, b_{m-s^{\prime}}^{\prime}, a_{1}^{\prime}, \ldots, a_{n-r^{\prime}}^{\prime}$ are the rearrangements of $a_{1}, \ldots, a_{n-r}, b_{1}, \ldots, b_{m-s}$.

Therefore,

$$
\begin{align*}
& \varphi\left(m, 0\left|a_{1}, \ldots, a_{m}\right| \mu, x\right) \varphi(n, n \mid \lambda, x) \\
&= c_{1} \varphi(n, n \mid \dot{\lambda}, x) \varphi\left(m, 0\left|a_{1}, \ldots, a_{m}\right| \mu, x\right) \\
&+c_{2} \delta_{m n} \varphi\left(n, 0\left|a_{1}, \ldots, a_{n}\right| \mu, x\right) \varphi(n, n \mid \lambda, x)+\ldots \tag{A1.1}
\end{align*}
$$

According to (3.6), all the other terms vanish as $x \rightarrow-\infty$. Thus, the only thing we have to do now is to calculate the coefficients c_{1}, c_{2} in (A1.1). We accomplish this by using

$$
\begin{align*}
& \varphi_{N+1, l}(x, \lambda) \varphi_{N+1, m}(x, \mu) \\
&=(-1)^{[p(l i+1][p(m)+1]} \frac{\lambda-\mu}{\lambda-\mu-\mathrm{i} c} \varphi_{N+1, m}(x, \mu) \varphi_{N+1, l}(x, \lambda) \\
&-\frac{\mathrm{ic}}{\lambda-\mu-\mathrm{ic}} \varphi_{N+1, l}(x, \lambda) \varphi_{N+1, m}(x, \mu) \tag{A1.2}
\end{align*}
$$

We have

$$
\begin{align*}
& \varphi(n, n \mid \lambda, x) \varphi\left(m, 0\left|a_{1}, \ldots, a_{m}\right| \mu, x\right) \\
&= \prod_{k=1}^{\bar{n}} \frac{i-\mu+\mathrm{i} c(|n-m|+2 k) / 2}{\lambda-\mu-\mathrm{i} c(m+n-2 k) / 2} \varphi\left(m, 0\left|a_{1}, \ldots, a_{m}\right| \mu, x\right) \varphi(n, n \mid \lambda, x) \\
&+\frac{(\mathrm{ic})^{n} n!\delta_{m n}}{\left.\prod_{k=1}^{n}-\lambda-\mu-\mathrm{i} c(n-k)\right]} \varphi\left(n, 0\left|a_{1}, \ldots, a_{n}\right| \mu, x\right) \varphi(n, n \mid \lambda, x)+\ldots \tag{A1.3}
\end{align*}
$$

By letting $x \rightarrow-\infty$ in (A1.3), we get (3.13).
Similarly, we can obtain other commutation relations among $A_{n}(\lambda), B^{+}(\ldots)$ and $B(\ldots)$. We list some of them in the following:

$$
\begin{align*}
& B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n-r}, c_{1}, \ldots, c_{r}\right) B^{+}\left(\mu|m| b_{1}, \ldots, b_{m-r}, c_{1}, \ldots, c_{r}\right) \\
&= \sum_{l=0}^{n} \sum_{\left(1 \leq i_{1}<\ldots<i_{1} \leq n-r\right)} \sum_{\left(1 \leq j_{1}<\ldots<j_{i} \leq m-r\right)}(-1)^{m n+l(n-r)+\sum_{k=1}^{l}\left(i_{k}+j_{h}\right)}(\mathrm{ic})^{l} l! \\
& \times \frac{\prod_{k=1}^{\bar{n}-r-1}[\lambda-\mu+\mathrm{i} c(|n-m|+2 k+2) / 2]}{\prod_{k=1}^{\bar{n}}[\lambda-\mu-\mathrm{i} c(m+n+2-2 k)]} \prod_{k=\bar{n}-r+1}^{\bar{n}}[\lambda-\mu+\mathrm{i} c(|n-m|+2 k) / 2] \\
& \times B^{+}\left(\mu|m| a_{i_{1}}, \ldots, a_{i_{l}}, b_{1}, \ldots, \bar{b}_{j_{1}}, \ldots, \bar{b}_{j l}, \ldots, b_{m-r}, c_{1}, \ldots, c_{r}\right) \\
& \times B^{+}\left(\lambda|n| a_{1}, \ldots, \bar{a}_{i_{1}}, \ldots, \bar{a}_{i l}, \ldots, a_{n-r}, b_{j_{1}}, \ldots, \bar{b}_{j}, c_{1}, \ldots, c_{r}\right) \tag{A1.4}
\end{align*}
$$

where the sets $\left\{a_{1}, \ldots, a_{n-r}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ have no common element and c_{1}, \ldots, c_{r} are fixed. The bar on the indices means the absence of them:

$$
\begin{align*}
B\left(\lambda|n| a_{1}, \ldots,\right. & \left.a_{n-r}, c_{1}, \ldots, c_{r}\right) B^{+}\left(\mu|m| b_{1}, \ldots, b_{m-r}, c_{1}, \ldots, c_{r}\right) \\
= & \sum_{l=0}^{r} \sum_{\left(1 \leq i_{1}<\ldots, i \leq r\right)} \sum_{\left(d_{1}, \neq c_{1}, \ldots c_{r}\right)}(-1)^{m n-l}(\mathrm{ic})^{l} \\
& \times \frac{\prod_{k=1}^{\bar{n}-r-l}[\lambda-\mu-\mathrm{i} c(|n-m|+2 k-2) / 2]}{\prod_{k=1}^{n}[\lambda-\mu+\mathrm{i} c(m+n+2-2 k)]} \\
& \times \prod_{k=\tilde{n}-r+l+1}^{n}[\lambda-\mu-\mathrm{i} c(|n-m|+2 k) / 2] \frac{(\lambda-\mu)^{2}+c^{2}(m+n)^{2} / 4}{(\lambda-\mu)^{2}+c^{2}(n-m)^{2}} \\
& \times B^{+}\left(\mu|m| b_{1}, \ldots, b_{m-r}, d_{i_{1}}, \ldots, d_{i_{1}}, c_{1}, \ldots, \mathrm{i} \bar{c}_{i_{1}}, \ldots, \bar{c}_{i}, \ldots, c_{r}\right) \\
& \times B\left(\lambda|n| a_{1}, \ldots, a_{n-r}, d_{i_{1}}, \ldots, d_{i_{i}}, c_{1}, \ldots, \mathrm{i} \bar{c}_{i}, \ldots, \bar{c}_{i}, \ldots, c_{r}\right) \\
& +\frac{2 \pi|c|}{(n-1)!} \delta_{m n} \delta_{n r} \delta(\lambda-\mu) A_{n}^{+}(\lambda) A_{n}(\lambda) . \tag{A1.5}
\end{align*}
$$

Appendix 2. The proof of (6.1.9)

Definition.

$$
\begin{align*}
& \chi\left(n, r\left|b_{1}, \ldots, b_{n-r}\right| a_{1}, \ldots, a_{n} \mid \lambda, x\right) \\
& \quad=\sum_{P}(-1)^{[P]} \prod_{j=1}^{r} \chi_{N+1, P a_{j}}\left(x, \lambda_{n-j+1}\right) \prod_{j=r+1}^{n} \chi_{b_{j-r}, P a,}\left(x, \lambda_{n-j+1}\right) \tag{A2.1}
\end{align*}
$$

where $\hat{\lambda}_{j}=\lambda+\mathrm{i} c(n-1) / 2-\mathrm{i} c(n-j)$.
From (2.11), we can derive that
$\chi_{l a}(x, \lambda+\mathrm{ic}) \chi_{m b}(x, \lambda)-\chi_{l b}(x, \lambda+\mathrm{ic}) \chi_{m a}(x, \lambda)=\chi_{m b}(x, \lambda+\mathrm{i} c) \chi_{l a}(x, \lambda)-\chi_{m a}(x, \lambda+\mathrm{i}) \chi_{l b}(x, \lambda)$.

Now, we can prove the analyticity of $\chi(n, r|\ldots| \lambda, x)$ on the lower half λ plane by using the same method we used to prove the analyticity of $\varphi(n, r|\ldots| \lambda, x)$.

Operators $\chi(n, r|\ldots| \lambda, x)$ along with $\varphi(n, r|\ldots| \lambda, x)$ gives us an alternative expression of $B^{+}(\ldots)$:

$$
\begin{align*}
& B^{+}\left(\lambda|n| a_{1}, \ldots, a_{n}\right) \\
&= \frac{1}{n!} \sum_{r=0}^{n}(-1)^{(n+1) r}\binom{n}{r} \varphi\left(n, r\left|b_{1}, \ldots, b_{n-r}\right| \lambda, x\right) \\
& \times \chi\left(n, r\left|b_{1}, \ldots, b_{n-r}\right| a_{1}, \ldots, a_{n} \mid \lambda, x\right) . \tag{A2.3}
\end{align*}
$$

Thus we can make the right-hand side of (6.1.9) well defined by introducing the expression

$$
\begin{align*}
\sum_{j=1}^{n}(-1)^{j-1} B(\lambda+ & \left.+\mathrm{i} c / 2|n-1| a_{1}, \ldots \bar{a}_{j}, \ldots, a_{n}\right) T_{m, a_{j}}^{(-)+}(x, \lambda-\mathrm{i} c(n-1) / 2) \\
= & \sum_{r=0}^{n-1} \frac{(-1)^{\left(1-\delta_{m, N+1}\right) r}}{(n-1)!}\binom{n-1}{r} \exp \left\{\frac{1}{2} \mathrm{i}[\hat{\lambda}-\mathrm{i} c(n-1) / 2] x\right\} \\
& \times \varphi^{+}\left(n-1, r\left|b_{1}, \ldots, b_{n-r-1}\right| \lambda+\mathrm{i} c / 2, x\right) \\
& \times \chi^{+}\left(n, r+\delta_{m, N+1}\left|\left(1-\delta_{m, N+1}\right) m, b_{1}, \ldots, b_{n-r-1}\right| a_{1}, \ldots a_{n} \mid \lambda, x\right) . \tag{A2.4}
\end{align*}
$$

Under this definition, the right-hand side of (6.1.9) has the same boundary value as that of $\operatorname{disc} G(x, \hat{\lambda})$ at $x=\infty$. This implies that the action of
$\operatorname{disc} G(x, \lambda-\mathrm{ic}(n-1) / 2)-H_{a}(\lambda-\mathrm{i} c(n-1) / 2) \psi^{(a)}(x, \lambda-\mathrm{i} c(n-1) / 2) \exp \{-i x[\lambda-\mathrm{i} c(n-1) / 2]\}$ on the states

$$
|f(m, y)\rangle=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{m} f\left(x_{1}, \ldots, x_{m}\right) \prod_{j=1}^{m} \theta\left(y>x_{j}\right) u_{a_{1}}^{+}\left(x_{1}\right) \ldots u_{a_{m}}^{+}\left(x_{m}\right)|0\rangle
$$

is zero and hence (6.1.9) follows.

Appendix 3. The existence of $\Delta^{(a)}(x, \lambda)$ and $\Delta^{(a)}(\infty, \lambda)$

Noticing (A2.3), we find that the existence of $\Delta^{(a)}(x, \lambda)$ depends on the existence of

$$
\begin{gather*}
\chi_{m, N+1}^{+}(x, \lambda+\mathrm{i} c(n-1) / 2) \chi\left(n-1, r\left|b_{1}, \ldots, b_{n-r-1}\right| a_{1}, \ldots, a_{n-1} \mid \lambda-\mathrm{i} c / 2, x\right) \\
\equiv \chi\left(m|n-1, r| b_{1}, \ldots, b_{n-r-1}\left|a_{1}, \ldots, a_{n-1}\right| \hat{\lambda}, x\right) \tag{A3.1}
\end{gather*}
$$

or $\chi\left(m|n-1, r| b_{1}, \ldots, b_{n-r-1} \mid \lambda, x\right)$ for short. With the help of
$\chi\left(b|n, r-1| b, b_{1}, \ldots, b_{n-r} \mid \lambda, x\right)=(-1)^{r} \chi\left(N+1|n, r-1| b_{1}, \ldots, b_{n-r} \mid \lambda, x\right)$
which originates from

$$
\begin{equation*}
\chi_{b+N+1}^{+}(x, \lambda+\mathrm{i} c) \chi_{a, b}(x, \lambda)=-\chi_{N+1, N+1}^{+}(x, \lambda+\mathrm{i} c) \chi_{N+1, a}(x, \lambda) \tag{A3.3}
\end{equation*}
$$

we derive the following differential equations:

$$
\begin{align*}
\frac{\partial}{\partial x} \chi(a|n, r| & \left.b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) \\
= & \frac{1}{2} \mathrm{i}[(n-2 r-1) \lambda-\mathrm{i}(n-r)(r+1) / 2] \chi\left(a|n, r| b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) \\
& +\sqrt{-c} u_{a}^{+}(x) \chi\left(N+1|n, r| b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) \\
& +\sqrt{-c}(-1)^{r-1} u_{b}^{+}(x) \chi\left(a|n, r-1| a, b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) \\
& +\sqrt{-c} \sum_{l=1}^{n-r}(-1)^{l} \chi\left(a|n, r+1| b_{1}, \ldots, \bar{b}_{l}, \ldots, b_{n-r} \mid \lambda, x\right) u_{b_{l}}(x) \tag{A3.4}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial x} \chi\left(N+1|n, r| b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) \\
&=\left.\frac{1}{2} \mathrm{i}[(n-2 r+1) \lambda-\mathrm{i} c(n-r+1) r)\right] \chi\left(N+1|n, r| b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) \\
&-\sqrt{-c}(-1)^{r} \chi\left(b|n, r| b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) u_{b}(x) \\
&+\sqrt{-c}(-1)^{r} r u_{b}^{+}(x) \chi\left(N+1|n, r-1| b, b_{1}, \ldots, b_{n-r} \mid \lambda, x\right) \\
&+\sqrt{-c} \sum_{l=1}^{n-r}(-1)^{l} \chi\left(N+1|n, r+1| b_{1}, \ldots, \bar{b}_{l}, \ldots, b_{n-r} \mid \lambda, x\right) u_{b_{l}}(x) . \tag{A3.5}
\end{align*}
$$

By studying the Neumann expansion of $\chi\left(m|n, r| b_{1}, \ldots, b_{n-r-1} \mid \lambda, x\right)$ with help from (A3.4) and (A3.5), just as we did for $\varphi(\ldots)$, we can prove that $\chi\left(m|n, r| b_{1}, \ldots, b_{n-r-1} \mid\right.$ $\lambda, x)$ are analytic on the lower half i plane. As a by-product, we prove the existence of $\Delta^{(a)}(\infty, \lambda)$.

References

Creamer D B, Thacker H B and Wilkinson D 1980 Phys. Rev. D 211523
Faddeev L D and Sklyanin E K 1978 Dokl. Akad. Nauk. SSSR 2431430
Fan H, Pu F C and Zhao B H 1988 Nucl. Phys. B 29952
Gockeler M 1981a Z. Phys. C 7263

- 1981b Z. Phys. C 11125

Izergin A G and Korepin V E 1981 Sov. Phys.-Dokl. 26653
Kulish P P 1980 Dokl. Akad. Nauk. SSSR 255323

- 1985 Lett. Math. Phys. 1087

Pu F C and Zhao B H 1984 Phys. Rev. D 302253

- 1986 Nucl. Phys. B(FS) 275 (FS17) 77

Pu F C, Wu Y Z and Zhao B H 1987 J. Phys. A. Math. Gen. 201173
Sklyanin E K 1979 Dokl. Akad. Nauk. SSSR 2241337
Thacker H B and D Wilkinson 1979 Phys. Rev. D 193360
Zakharov V E and Shabat A B 1971 Zh. Eksp. Teor. Fiz. 61118 (1973 Sov. Phys.-JETP 34 62)

